For Developers
Implementing AI Response Caching
Avoid redundant API calls with smart caching strategies - reduce costs by 40-60%.
8 min readUpdated Feb 1, 2026
Implementing AI Response Caching
Avoid redundant API calls with smart caching strategies.
Expected Savings: 40-60% cost reduction
Basic Implementation
import { Redis } from 'ioredis';
const redis = new Redis();
const TTL = 3600; // 1 hour
async function cachedQuery(prompt: string) {
const cacheKey = `ai:${hash(prompt)}`;
// Check cache first
const cached = await redis.get(cacheKey);
if (cached) return JSON.parse(cached);
// Miss: call API
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: [{ role: 'user', content: prompt }]
});
// Cache the result
await redis.setex(cacheKey, TTL, JSON.stringify(response));
return response;
}Semantic Caching
For similar (not identical) queries:
const cache = new SemanticCache({
similarity: 0.95,
embedding: 'text-embedding-3-small'
});
// "What's the weather in NYC?"
// matches "NYC weather today?"Cache Strategies
| Strategy | Use Case | TTL |
|---|---|---|
| Exact match | Identical prompts | 24h |
| Semantic | Similar meaning | 1h |
| Prefix | Same context | 30m |
Monitoring
Track these metrics:
- Cache hit rate (target: >50%)
- Cache miss latency
- Memory usage
- Invalidation frequency